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Abstract. Do energy-efficiency increases – changes in processes that lower the amount of 

energy input required to produce a unit of output – contribute to the environmental-policy 

goal of reducing energy consumption and/or emissions? How big is the undeniable latent 

demand in society for increased output due to decreased input costs? Since 1980 attempts to 

answer this ‘rebound’ question have depended on theory and micro-economic empirical work 

tracing household expenditure reactions to price changes induced by efficiency increases, 

with no resulting consensus on total rebound’s size. We instead take world data on Total 

Primary Energy Supply TPES and World Product WP (the GDPs of 190 countries) from 

1971-2009 and perform regression and Granger causality tests using change in TPES and 

WP/TPES as the only two variables. Rebound may be around 100%, casting doubt on the 

efficacy of the environmental energy-efficiency strategy. Caps and energy taxes are well-

known alternatives that are by definition efficate. 

 

1  Introduction and Rebound 

   Assuming that energy-resource depletion and/or the pollution resulting from combusting 

energy resources are unsustainably high, we search for strategies or policies to reduce rates of 

depletion (ipso facto reducing pollution) of carbon-based energy resources. A popular 

strategy is to increase energy efficiency, defined as the ratio between economic outputs and 

energy inputs. A given number of lumens produced by fewer kilowatts is an example of an 

energy-efficiency increase and can be expressed as a percentage change. The strategy 

prescribes policy-induced efficiency increases to supplement the business-as-usual ones taken 

by firms and consumers to lower production costs. If the number of outputs remains the same, 

an amount of energy is saved called engineered (or engineering) savings. 

   Since, however, it is just as accurate to describe efficiency increases as increased 

production of outputs while consumed inputs remain the same (conserving no energy) 

economists endeavour to measure effective demand for outputs and energy inputs subsequent 

to energy-efficiency increases. This is known as rebound and is measured as a percentage of 

engineered (engineering) savings as defined above. If latent demand is such that output 

increases by a percentage less than the percentage increase in efficiency, some input is saved 

and rebound is < 100%; some energy is conserved. If the market supply of energy resources 

remains the same (Turner & Hanley, 2011), and consumer demand for outputs is high enough 

that all of this previous amount is still consumed, rebound = 100%. If the efficiency increases 

cause even more energy to be consumed, rebound is > 100% – the case known as Jevons’ 

Paradox (Jevons, 1865; Alcott, 2005). While there is some evidence for this last case, from 

the point of view of policy it need not detain us here: at rebound of 100% the energy-

efficiency strategy is ineffective (and as it approaches 100% it becomes cost-ineffective). 

   Let us embed the energy-efficiency strategy in the I = PAT formula: 
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 Environmental impact, I, is in this paper the depletion of fossil fuels and biomass 

encapsulated in the metric Total Primary Energy Supply, TPES, and is a function of 

 the number of consumers or the population, P, 

 the amount of output of goods-and-services per person or affluence, A, 

 and the technological efficiency, T, with which, on average, the relevant energy 

resources produce goods-and-services. 

In its simple, inaccurate form the formula suggests that reducing any right-side factor reduces 

the left-side factor. However, changes in any right-side factor affect the other right-side 

factors, meaning there is no necessary reduction in impact. These interdependences can be 

called rebounds, and the formula must be written I = f(P, A, T) as illustrated by Figure 1. 

(Alcott, 2010) Thus, the study of energy-efficiency rebound tries to measure the effects of 

lowering T on raising some combination of P and A. Theoretically and plausibly, increased 

efficiency has enabled more people to satisfy more demand for economic outputs, and as 

shown by Khazzoom (1980), any price elasticity of demand means that rebound is greater 

than 0%. But is it 100%? To answer this question, this paper statistically analyses only the 

relationship between T and I, ignoring for the moment population and per capita GDP (the 

numerator of the affluence factor). The research question is: How does observed percentage 

increase in T (rising efficiency or falling energy intensity of the economy) affect observed 

percentage increase in TPES? 

 

 

Figure 1.  A menu of policies to lower environmental impact (I) defined as combustion of fossil fuels. 

The indirect ones are on the right side of I = PAT [accurately: I = f(P, A, T)] and hope to lower impact 

by lowering population size, consumption of goods and services per person, and/or fossil fuel 

amounts needed to produce goods and services. The direct ones render the indirect ones superfluous. 

 

   Actually, the quantity on the left side of I = f(P, A, T) can be reduced directly by the policy 

of capping energy consumption. By contrast, policies to reduce right-side factors are indirect 

(and hopeful). Capping is either by physically defining overall, politically desired amounts of 

resources that are allowed to be mined or harvested, or by taxing their consumption so high 

as to result in the desired amount. (Weitzman, 1974; Daly, 1974; Tickell, 2008) While the 



indirect measures are uncertain, the effectiveness of the left-side policy is 100% certain in the 

case of caps, and reasonably controllable in the case of taxes. This argues for first attempting 

to enact the caps or high taxes. The complex task of measuring the interactions between 

population size, goods-and-service consumption per person, and technological efficiency 

(and ipso facto of measuring rebound) is necessary only if caps are politically rejected – in 

which case we want to know if efficiency increases move towards less resource consumption 

or not. 

   Hundreds of rebound studies have been undertaken since the groundbreaking work of 

Brookes (1978; 1979) and Khazzoom (1980). Most work has been micro-economic, seeking 

by various means to see how an autonomous energy-efficiency increase works its way 

through all the sectors of the economy. Employed are consumer interviews and sectoral data 

using time series and input-output analysis to determine elasticities and cross-elasticities of 

demand given the income effect that emerges when consumers find themselves with leftover 

purchasing power after paying less for the energy needed for their lifestyle heretofore. 

Efficiency has increased the economy’s production possibilities frontier (how much output it 

can produce from given combinations of inputs), but to what extent are these possibilities 

availed of? For the same amount of car-kilometres, electronic gadgets, house-heating or 

illumination one will pay less because efficiency increases induces price decreases both for 

goods-and-services and the energy inputs themselves. The literature distinguishes between 

direct and indirect rebound, totalling to total rebound. Driving farther with the same amount 

of fuel after buying a more fuel-efficient car is an example of direct rebound. Spending the 

money saved on anything else is indirect rebound. Total rebound is the only quantity of 

interest from the environmental perspective. 

   It is of interest that there is no methodology for deriving indirect or total rebound from 

direct rebounds, however accurately they are measured. Indecisive, moreover, are known 

micro-economic methods for measuring indirect rebound and macro-economic methods of 

measuring total rebound without taking the detours of measuring direct and indirect rebound. 

The unfortunate result is that estimates of total rebound vary from about 15% to about 350%. 

(Dimitropoulos, 2007, p 6360; Sorrell, 2009) Total world rebound was estimated at 51% by 

2030 by Barker et al. (2009, p 425), at 58% in Germany by Frondel et al. (2008, p 154) and at 

over 100% at the macro level – levels at which efficiency policy becomes environmentally 

harmful, counterproductive – by Brookes (1990; 2000), Saunders (1992; 2000), Roy (2000), 

Fouquet & Pearson (2006), Polimeni (2009) and Hanley et al. (2009). 

   Formally, the search is for the efficiency elasticity of demand (Sorrell et al., 2009, p 1359) 

for the input that is newly being used more efficiently or productively in the technical sense. 

This can be broken down into finding the efficiency elasticity of the prices of (1) goods-and-

services and (2) energy itself; and the price elasticity of demand for these two categories of 

things. But these elasticities remain elusive, and indeed theory rather than empirical findings 

dominates rebound research (Birol & Keppler, 2000): While it is uncontested that energy 

consumption has increased alongside efficiency increases, it is claimed by some that 

consumption would have increased even more without the efficiency increases (Howarth, 

1997, p 3; Schipper & Grubb, 2000, p 370) – claims that are undoubtedly purely theoretical. 

Most partisans of high rebound of around 100% likewise acknowledge their reliance on 

theory. (Saunders, 2000; Sanne, 2000) 

   Transdisciplinarity would welcome non-economists to address the question. Economic 

history, anthropology and psychology, for instance, should be allowed to research the topic. 

(Moezzi, 2000; Sanne, 2000; Tainter, 2008) Indeed, before describing our study, in Figure 2 



we show the basic rebound question as seen from the point of view of such disciplines: What 

do human beings do with resources that momentarily lie fallow, due to technological 

efficiency increases, when the conditions of their supply remain the same? What do they 

‘demand’? What effects does the larger production possibilities frontier have on population 

and affluence? 

 

 

Figure 2.  If economic agents leave the initially fallow amount lying fallow, rebound is 0%; real 

savings = engineered savings. In this case they would produce less and have more non-working time. 

If all the initially fallow amount is used up (perhaps with a slight delay) by more production of goods 

and services and/or more people, rebound is 100%; efficiency increase has had no effect on 

consumption or environmental impact. It is this hypothesis we test. 

 

2  Research question and metrics 

   To date rebound research has thus produced no results offering robust guidance in choosing 

environmental policies. We now suggest an approach to the question of whether efficiency 

increases in and of themselves cause the rate of increase in resource consumption to slow, in 

which case rebound would be < 100% and the environmental efficiency strategy would be 

effective. We are looking for the direction of the causal arrow – or the absence of a causal 

arrow. An ‘absence of a causal arrow’ would describe the case where efficiency increases do 

not cause resource-consumption rates of increase to change; the trend stays the same, and any 

temporarily fallow-lying amount of the resource (input) in question gets mined and 

combusted. 

   The method here is thus not micro-economic like the research described in the previous 

Section, nor does it apply macro-economics by means of a multivariate model of energy 

consumption (TPES). Instead, we attempt two statistical analyses, using world data, taking 

TPES as our dependent variable and as our single independent variable TPES efficiency in 

producing goods-and-services. The metric for the latter is the sum of the GDPs of the 190 

countries in our database (IEA, 2012) divided by TPES. This we call World Product 

(sometimes referred to here and in other research as World- or Aggregate-GDP), meaning our 



independent or causal variable is WP/TPES.
1
 To our knowledge, aside from Jevons (1865, pp 

261-280, 387-388), only one other study has adopted a similar approach: Polimeni (2009) 

regressed TPES on the several independent variables including population, population 

density, urban population, rural population, GDP, exports, imports, household consumption, 

government consumption and energy intensity, this last being merely the inverse of our 

variable, energy efficiency.
2
 Polimeni’s study, although achieving more depth, is moreover at 

somewhat less than world scale, covering the four economic data units U.S., Brazil, sixteen 

European countries and twelve large Asian countries. Our time series covers 38 years, from 

1971 through 2009. 

   Using world data avoids a problem with country or country-group (e.g. OECD) data. These 

must namely grapple with so-called leakage, for the measurement of which there is as yet no 

consensus. Leakage occurs when a given country’s TPES is underreported because the energy 

embodied in its net imports goes uncounted, or overreported if that embodied in its net 

exports is ignored. (Helm et al., 2007; Peters, 2008; Alcott, 2012) We are moreover focusing 

on energy inputs alone, while other similar yet more complex studies, also at world scale, 

have asked after both energy and material consumption or focused on emissions rather than 

depletion; see Krausmann et al. (2009)
3
, Luzzati & Orsini (2009), and Steinberger et al. 

(2010). 

   Our regressand or explicandum, TPES, includes the fossil fuels coal, oil and gas. It also 

includes combustible renewables and waste, nuclear, hydro, geothermal, and solar. (IEA, 

2012)
4
 In future work we will adjust this variable in three ways: (1) To focus on our metric 

for environmental impact we will deduct from TPES all sources except fossil fuels and 

biomass. (2) Next, we will add biomass used as food for both humans and work animals, i.e. 

include animal metabolism. (3) Finally, we will deduct biomass in order to focus even more 

narrowly on non-renewable as opposed to renewable sources. A very sophisticated study 

would even take into account changes over time in the composition of TPES, i.e. proportions 

of coal, oil, gas, etc. 

   Our regressor or explicans is a ratio, WP/TPES. To derive an extensive or absolute number 

(e.g. TPES, our ‘impact’ factor in terms of I = f(P, A, T)) from an intensive or fractional 

number (the efficiency ratio which is our ‘technological’ factor), one needs a further absolute 

quantity by which to multiply the fraction. This quantity would have to be independently 

measured rather than derived from WP/TPES in order to avoid a reductio ad absurdum. In 

terms of I = f(P, A, T) some combination of increases in population and total goods and 

services – proxied by GDPs – provide these absolute amounts. But our statistical methods of 

regression and testing for Granger causality avoid this requirement because a model of TPES 

is not being attempted. Further statistical work could regress either WP (goods and services) 

or population size on efficiency using well-known models of economic growth. (Cleveland et 

al., 1984; Stern, 2000; Sorrell et al.,2009; Steinberger et al., 2010; Kümmel, 2011) We 

suggest that a major shortcoming of rebound research to date has been to treat population 

                                                      
1
 Aesthetically, we would like to use GWP, Gross World Product, but of course there is no net world product, so 

we are adopting this unusual numerator. 
2
 We suggest adding to the model’s factors discoveries of energy resources, decreases in the energy cost of 

obtaining useful energy, and efficiency increases in the use of the other major factor of production, labour. 
3
 The time period covered by Krausmann et al. (2009) was very long, namely 1900-2005, and, like Steinberger 

et al. (2010) the materials whose consumption was measured were biomass, fossil fuels, industrial minerals and 

metallic ores, and construction materials. These studies included not only material/energy productivity and total 

material/energy consumption but also income, income per capita, population and biomass alone.  
4
 Computations of TPES in joules from data on hydro, geothermal, etc. and nuclear electricity is explained in the 

IEA Energy Statistics Manual. (IEA, 2012) 



fully exogenously.
5
 Yet surely increased technological-efficiency increases in agriculture, 

home-heating, and transport, and the effect of rising affluence (enabled in great part by 

efficiency increases) on medical progress, for instance, have constituted necessary or even 

sufficient conditions for the seven-fold rise in population during the last 200 years. 

(Giampietro, 1994) 

   A further challenge is to endogenise our exogenous variable WP/TPES. For instance labour 

efficiency as WP/work-hours is usually increasing due to organisational, institutional or 

infrastructure changes rather than technological ones
6
, causing WP to rise, and thus causing a 

change in our own explicans, WP/TPES, which has nothing to do with technological 

efficiency. We could perhaps arbitrarily assume that change in technological efficiency 

causes only half of the change in WP/TPES – the other half being caused by non-

technological efficiency increases. We would then run an analysis using WP/TPES divided by 

2. Further fine-tuning would include the effects of labour-efficiency and energy-efficiency 

changes on each other, sometimes partly subsumed under the concept of rebound effects with 

respect to time. (Binswanger, 2001) 

   We measure WP in Geary-Khamis dollars, which is using purchasing-power parity (PPP) 

rather than currency exchange rates, and the base year for adjusting for general price changes 

is 2000. Of course GDP measures only (the prices of) those goods and services recorded 

through monetary transactions, leaving barter, unpaid work and many illegal activities 

unmeasured. Thus, some real efficiency changes escape the GDP metric. We assume, 

however, that the proportion of production not included in GDPs remains about the same, 

and since we compare change in WP/TPES with change in TPES, we believe WP remains a 

good proxy for change in total output. We believe the main weakness of our monetary metric 

is that it is not the one used in defining policy-induced (mandated) efficiency increases. 

These are defined purely physically, e.g. joules per lumen or per ton-kilometre, not per unit 

of GDP. However, there is no reliable way of measuring change in aggregate output in 

physical units, and so we have opted to use World Product. 

   The hypothesis that the current paper intends to investigate is whether, on a global scale, 

changes in energy efficiency, measured as WP/TPES, can be shown to correlate to, either 

positively or negatively, and even cause, changes in total energy usage, measured as TPES. 

The null hypothesis that we ultimately test is that energy efficiency change has no causal 

effect on changes in total energy usage. 

 

3  Methods and Results 

   Does a change in our independent variable cause a change in our dependent one? It is 

uncontested that empirical observation reveals rises in both, as shown in Figures 3 and 4. To 

answer this, within our bi-variate limitations, we first regress energy consumption on energy 

efficiency using ordinary least squares (OLS). Moving from correlation to causality tests, we 

then test for Granger causality. (Granger, 1969)  

                                                      
5
 GDP (and ipso facto WP) should also not be an exogenous factor (independent variable) in modelling energy 

consumption, as this ignores efficiency increase’s effects on GDP. (Madlener & Alcott, 2009)  
6
 We have in mind factory- or office-floor efficiencies, smoothly functioning banking and court systems, and 

transport and information networks. 



 

Figure 3. Emissions have risen at similar rates to fossil-fuel consumption and both similar to 

efficiency, shown here as its inverse, with the downward-sloping line. Thus, decoupling is consistent 

with increasing emissions and input consumption. Source: CGI based on Raupach et al., 2007: 

http://www.pnas.org/content/104/24/10288.abstract  The graph is consistent with countless studies. 

 

3.1  Regression analysis with Ordinary Least Squares 

   Our preliminary and tentative regression analysis tries to glean some further understanding 

of the apparent high correlation between WP/TPES and TPES, for which the basic data are 

given in Appendix 7 and “TPES & WP Data Analysis, Time Series”. Taking WP in its 

Purchasing Power Parity rather than nominal GDP form, 

1. with OLS regression of the absolute values, R squared values coalesce around 97%, 

and around 92%
7
, although much of this is down to shared general trends. Analysing 

real (percentage-based) change is necessary to get a better picture of correlation. 

 

2. when percentage change in the values is regressed, R squared is 0.24. This suggests a 

degree of correlation, although it highlights the expected result that energy efficiency 

change, as measured by WP/TPES, cannot fully explain variations in TPES. 

From the discovery of not insubstantial correlation between changes in aggregate energy 

efficiency and aggregate energy use, we were motivated to further tease out, if possible, 

whether, crucially, a direction of causality can be established, namely via Granger analysis 

for the time being. Although we could continue with added variables in OLS, and we may 

well do so in the future, our primary concern initially was to seek out causation. There is a 

high range, however, in which the degree of causation could be determined to fall. The two 

questions are (1) whether greater macroeconomic energy efficiency is indeed a causal factor 

in, i.e. driving, growth in primary energy supply (i.e. rebound of at least 100%) and (2) what 

fraction of total growth the efficiency increases are responsible for – perhaps up to a quarter, 

or even greater? We speculate that the degree of causation, if it exists, between such 

individual values lies somewhere well south of 100%, likely much closer to the 24% 

                                                      
7
 Looking at a somewhat different metric for environmental impact, Total Material Extraction or TDMC, 

Krausmann et al. (2009) found somewhat somewhat weaker correlations (between WP/TDMC and TDMC than 

in the case of energy alone. 

http://www.pnas.org/content/104/24/10288.abstract


proportion of response variation. Certainly there are other drivers of the observed increase in 

energy consumption, but we cannot yet conduct a fuller multivariate analysis and are mainly 

trying to see if technological efficiency increase is one of them. 

 

3.2  Granger causality 

   Granger analysis relies on a time lag between the hypothesised causal and hypothesised 

dependent variables. If the lagged, independent variable can be shown to accurately forecast 

the future values of the other variable, changes in it Granger cause changes in the second 

variable. Both uni- and bi-directional causality can result; in our case we are hypothesising 

that changes in efficiency cause changes in consumption and therefore take efficiency as the 

lagged (in our case ‘independent’) variable. Because the Granger test cannot evaluate more 

than two variables at a time other independent (causal) variables can go undetected; therefore, 

suggested for the future are more complex vector autoregression (VAR) tests that are beyond 

the scope of the present paper. As shown in Figure 4, the two quantities TPES and WP/TPES 

themselves have changed at different rates. 

 

 

Figure 4.  World TPES in Exajoules, World Product/TPES in Bn USD (PPP) per EJ. See also 

Appendix 1. 

 

   Four conditions must be met before the Granger causality test can be done: (1) The data set 

must be stationary, i.e. not show significant shifts in the mean and the variance over time. (2) 

An appropriate length of the time lag must be decided upon. (3) Unit roots should not be 

present over time. (4) There should be no or little autocorrelation. We briefly describe these 

tests in order. 

3.2.1  Detrending 

   The issue of trend is one of the most common and simplest challenges in dealing with raw 

data in time series. In order for many statistical tests to be performed, the data being 

investigated must display a stationary or strongly stationary process. Stationarity is a quality 

whereby a time series, in particular, tends to carry a joint probability distribution wherein the 



average value and variance does not significantly change across the length of the data set. 

This is a problem for time series that involve growing or shrinking values over time – trends 

– such as TPES or WP/TPES. Our solution is to perform a detrending transformation through 

first differencing, i.e. simply changing the data from raw unit values into values that measure 

the difference between one value and the previous value to arrive at a data set that displays 

changes in the data for each variable rather than the data itself, as shown in Figure 5. It is in 

fact these changes in WP/TPES and TPES, and how they affect each other, that we are 

interested in. 

 

Figure 5.  Changes per year in Bn USDs (PPP) per EJ, and EJs respectively. See also Appendix 2. 

 

     To better illustrate this concept, assume that GT is a value in time series G at time T. To 

first-difference transform time series G into time series H, follow the formula below for every 

time T: 

Ht = Gt – Gt-1 

This method is easily applied in a spreadsheet application or in a statistical program such as R 

by recreating the equation above and applying it to every value. The only downside to first 

differencing is that the time series sample size is reduced by one value since the first value 

has no prior one from which to difference itself. Further degrees of differencing are of course 

possible, each time recalculating the difference between the value at time T and time T-1. To 

decide on the best degree of differencing one calculates the variance of the differenced time 

series as well as the original and chooses the one displaying minimal variance. In our case 

this was first differencing, which also fits well with the narrative of what is being 

investigated. Of course, with trend largely removed the problem of the presence of unit roots 

remains, dealt with in the Dickey-Fuller test in section (3.2.3) below. 

 

3.2.2  Lag specification 



   Lag interval is a crucial value for forecasting when attempting a Granger causality test. Lag 

determines the order to which a time series variable will be shifted back in relative 

comparison to another, years in the current case because we are dealing with annual data. 

Specifically, change in total energy use (TPES) from a given year will be analyzed relative to 

the change in energy efficiency (WP/TPES) from some prior year. The independent variable 

should be lagged behind the dependent variable. The lag of suspected cause behind – that is, 

earlier than – suspected effect allows for study of the hypothesis that the independent variable 

(WP/TPES) can predict the future fluctuations in the dependent variable (TPES).  

   The R program var.lag.specification (Brandt) in package MSBVAR, based on the 

prevailing literature (Lutkepohl, 2004), was utilized to generate measurements based on the 

sample size and content. See Appendix 3 for values of input and output. The program tests 

the suitability of each proposed lag length, here held to a reasonable maximum of 6, which 

can be evaluated using Hannan-Quinn (HIC), Bayesian (BIC), and Akaike (AIC) information 

criteria (Hannan & Quinn, 1979; Schwartz, 1978; Akaike, 1974). Results of the analysis 

indicate via all the criteria that a lag length of 1 is the best option. (NB: for the information 

criteria, lower values are preferable.) This lag length is a crucial value with significant impact 

on the output of the following calculations, and to help avoid statistical bias its selection must 

have the demonstrated empirical backing. 

 

3.2.3  Unit roots/non-stationarity 

   With the detrended time series assigned an appropriate lag order of 1, an augmented 

Dickey-Fuller test to assess the presence of unit roots can be carried out with the null 

hypothesis that unit roots are present (Said & Dickey, 1984). The presence of unit roots is an 

indication of non-stationarity, and since the Granger Causality test requires a stationary 

process it is necessary to validate whether or not the first differencing has indeed transformed 

the original time series of raw values into a relatively stationary time series. If the null 

hypothesis can be rejected, it can be assumed with high certainty that the time series has been 

transformed into a stationary or strongly stationary process. 

   The R program adf.test (Trapletti) in package tseries, designed after best practices 

(Banerjee et al., 1993), was employed to run our unit root tests. Inputs and outputs for the 

procedure are found in Appendix 4. The purpose of this augmented version of the Dickey-

Fuller test with lag order set to 1 as prescribed is to determine whether either of the specified 

time series, change in TPES or change in WP/TPES, is highly indicative of further increases 

in its own value beyond what is evidenced in the lag period, suggesting a strong trend. This 

would indicate a unit root and therefore the presence of non-stationarity. (Dickey & Fuller, 

1979)  A Dickey-Fuller value is returned with sufficiently negative values indicating a high 

degree of confidence that the null hypothesis of the presence of unit roots can be rejected, and 

this confidence is also relayed as a p-value. For changes in both the TPES and WP/TPES 

time series the Dickey-Fuller statistics are -3.7339 and -4.4242 respectively, both translating 

into a p-value below the significance level of .05, justifying rejection of the null hypothesis. 

We can proceed under the assumption that the time series data sets are unlikely to have 

serious issues with non-stationarity. 

 

3.2.4  Autocorrelation 



   A Durbin-Watson autocorrelation (or ‘serial correlation’) test is undertaken as the last step 

before the Granger test itself. It looks at the degree to which values in a time series may be 

positively or negatively correlated to future values by examining the residuals over time. 

(Durbin & Watson, 1950; Durbin & Watson, 1951) Durbin-Watson is interested in 

fluctuations around a predicted regression fit line (residuals) and how they might correlate to 

one another. It should however be noted that the presence of autocorrelation is not in-and-of-

itself disastrous since it can occur in data sets from which significant information can still be 

gleaned. (Durbin & Watson, 1971) However, heed must be paid to the type and strength of 

autocorrelation when interpreting the results, as it may weaken seemingly significant 

findings. Durbin-Watson test results are typically presented in the form of a Durbin-Watson 

statistic ranging in value between 0 and 4, with numbers less than 1 representing positive 

autocorrelation, numbers greater than 3 representing negative autocorrelation, and numbers in 

between representing minor or uncertain degrees of autocorrelation in one or the other 

direction. A value of exactly 2 represents absolutely no autocorrelation. 

   The R program dwtest (open authorship) in package lmtest, which was formulated to test 

the degree of autocorrelation in variables, including those in time series, was utilized to 

examine the degree of autocorrelation in changes in TPES while changes in WP/TPES are 

tested for their Granger-causality with a lag order of 1. Inputs and outputs are available in 

Appendix 5. A Durbin-Watson statistic of 1.1266 is returned, in between the neutral value 

(2) and the positive autocorrelation value (1), although closer to the latter. This indicates that 

there is enough evidence to reject the null hypothesis that autocorrelation is non-existent, but 

there is not enough evidence to prove a strong positive link. This result is not unexpected, 

since although first differencing has mostly detrended the data, there is still a slight upward 

slope in the change in TPES and slight downward slope in the change in WP/TPES, 

suggesting a gradual acceleration and deceleration respectively. Nonetheless, this Durbin-

Watson value does raise concern that the ultimate Granger Causality test could be somewhat 

affected by autocorrelation, and this is a reason for hesitation when we interpret the potential 

significance of the results. 

 

3.2.5  The Granger test itself 

   The Granger Causality test was developed as a means by which to demonstrate not only 

correlation, but also possible causation between two variables represented in time series 

through an investigation of whether one variable, when lagged behind a second, can 

accurately predict future values of this second variable through regression techniques. 

(Granger, 1969) The Granger test, however, can only be applied to stationary time series data 

of two variables maximum. The two variables in the current time series analysis have been 

adapted and verified to meet any preconditions. The stationarity of the data was tended to by 

a first differencing transformation of the original raw figures for TPES and WP/TPES, and 

validated via an Augmented Dickey-Fuller test for unit roots. Lag specification was 

employed to determine a proper lag period for the Dickey-Fuller Test and subsequent Durbin-

Watson test for autocorrelation. The data appears to be applicable for the Granger test, with 

possible autocorrelation concerns in mind. 

   We employed a custom, non-packaged program written at the University of Illinois at 

Urbana-Champaign, the entirety of which has been included in Appendix 6. This program 

was selected for the transparency and robustness of function as well as clarity of output. It is 

run to determine whether the null-hypothesis can be rejected that a change in WP/TPES does 



not Granger-cause a change in TPES, or vice versa. The program is able to calculate the F-

statistic and determine critical values for the given input parameters and values. Certain 

critical values associated with the inputs correspond to significant degrees of certainty, and 

the degree to which the F-stat value exceeds these critical values leads to the p-value. As 

such, it is ultimately the p-value by which the hypothesis is tested; F-statistics are provided 

only to allow for manual comparisons against critical value tables if desired. 

   For the first calculation, namely that a change in WP/TPES can cause a change in TPES – 

essentially the macro rebound effect being investigated – the test returned an F-statistic at 5.1 

exceeding the critical threshold, and thereby a p-value below the .05 significance level at 

approximately 0.027, suggesting that the null hypothesis – that WP/TPES does not granger-

cause TPES – can be rejected with some degree of confidence. The result, if accurate, 

suggests that there is a significant probability that changes in WP/TPES may cause changes in 

TPES. For the sake of thoroughness the reverse causality relationship was tested, but there 

was not significant evidence to be found of bi-directional causality (from TPES to WP/TPES) 

with an F-statistic of approximately 2.2 leading to a p-value of approximately 0.147, not 

enough to reject the null hypothesis. 

 

4  Discussion 

Caution is in order when interpreting the Granger Causality results, however promising they 

are for the hypothesis that a causal arrow runs from efficiency increase to more, not less, 

input consumption. Not only are there lingering concerns over the extent and implications of 

autocorrelation, but we have not tested for further variables that might cause changes in 

TPES, and we have not endogenised our independent variable WP/TPES. Our metrics 

themselves can moreover be questioned as to their adequacy in environmental research. We 

nevertheless believe our paper puts forward a new methodology to answer a seldom-asked 

empirical question at world scale. We try to keep our ‘eyes on the prize’, that is, only test 

energy efficiency for its effect on energy consumption. Narrowing down imperfections in the 

methodology, refining the metrics, adding more possible causal variables and endogenising 

them remains to be done. 

   More robust and complicated methods for assessing causality await researchers, for 

example vector autoregressive modeling such as the Toda-Yamomoto test (Toda & 

Yamamoto, 1995) which enables investigation of such relationships using multiple 

independent variables, for instance using open-source programs such as R. (Pfaff, 2008) 

Heightened specificity and accuracy are possible, particularly in detecting intermediate 

mechanisms within the rebound effect, for example efficiency’s effects on population and 

GDPs. Polimeni’s study (2009), while only on the basis of several regions, is undoubtedly 

more statistically robust and reliable than our efforts toward a global analysis, using at it does 

multiple-regression methods including both OLS and GARCH
8
 time-series modeling. Our 

attempt is a relatively conservative, yet hopefully foundational, step in largely uncharted 

territory. 

   Our initial, rudimentary linear regression approach with an eye towards finding correlation 

led to two issues: that of trend, discussed in section 3.1.1 above, which interfered with a clean 

reading of the correlation; and the likelihood that even an involved correlation analysis would 

                                                      
8
 Polimeni used OLS to find “first-order correlation… among the disturbances” and a GARCH (1,1) to correct 

for possible “heteroscedasticity and autocorrelation.” (2009, p 149) 



yield little of academic value. With numerous possible intermediate mechanisms, which we 

hope to eventually tease out and quantify, even the strong correlation, taken alone, would 

only confirm what almost all researchers already know. Whilst the high co-efficient of 

correlation might shift the burden of proof from the task of proving rebound to the task of 

proving savings (i.e. that rebound is less than 100%), which after all have not materialised, 

we decided to test causality itself by means of a Granger test. 

   While the Granger results do suggest that efficiency increase causes increased consumption 

of the input used more efficiently – meaning that the real, universally attested rises in energy-

input consumption are not higher than they would have been without the efficiency increases, 

as often claimed. (Howarth, 1997, p 3; Schipper & Grubb, 2000, p 370) Indicated is high 

rebound, but the Granger test cannot quantify it as a percentage of engineered savings. It also 

gives scant indication of the percentage of increase in energy consumption that might be 

caused by efficiency increase as opposed to other causal factors yet to be rigorously tested 

for, aside from the potential 24% proportion of response variation suggested by OLS 

analysis. Moreover, while the test results do show that change in WP/TPES may indeed alter 

the trend of change in TPES, we must still rely on theory to judge what would have happened 

had there been no increase in efficiency. 

   In terms of Figure 2, our data is consistent with society’s indeed consuming all of the input 

that could be saved, at the same level of input and an increase in output. Until we test a full 

energy-consumption model including non-technological efficiency increases and population 

or labour-hours, we likewise do not know if there is backfire, i.e. rebound > 100%. Earlier 

research has shown that if greater efficiency does cause greater population, and affluence 

remains unchanged, we likely have backfire, or at least little hope of saving energy. (see 

Giampietro, 1994) 

   Increasing energy efficiency is of course the same as declining energy intensity of the 

world economy (‘decoupling’), and while this has not yet been followed by any reduction in 

absolute amounts of environmental impact, the jury is still out on the direction of efficiency 

increase’s causal arrow. We however go ahead and interpret both the raw data, e.g. in our 

Figures 3 and 4, as offering more support to the high-rebound rather than a low-rebound 

hypothesis of, say, < 50% of engineered savings.
9
 Figure 3 showed the big picture, with our 

dependent variable represented by ‘Emissions’ and our independent variable by ‘Carbon 

intensity of GDP’. Bearing the burden of proof, In light of this high first-order correlation, we 

believe the burden of proof should rest with the low-rebound hypothesis which claims that 

efficiency in and of itself causes real savings. Note that that hypothesis must show what 

factors do, then, cause the undeniable increase in energy consumption, and even show that 

these have the strength to counteract the allegedly consumption-reducing effect of likewise 

empirically undeniable efficiency increases. 

 

5  Conclusion: the efficiency strategy vs caps 

   In the Introduction we noted that there are direct, necessarily effective policies to reduce 

impact, the quantity on the left side of I = PAT. They define in physical terms the overall 

rates of depletion and levels of pollution deemed acceptable to society, then either cap them 

                                                      
9
 Even this low estimate of total rebound should replace the estimate used universally by national and 

international energy agencies – namely, zero. Khazzoom (1980) already proved that this estimate, which simply 

equates engineered savings with real savings, ignoring rebound altogether, is a crass scientific mistake. 



at those levels or, to theoretically achieve the same result, tax them at an appropriately high 

rate (Weitzman, 1974; Daly, 1974; Tickell, 2008) – options we have not explored here in any 

detail. By contrast, right-side measures, including legislating technological efficiency, can 

only with a very large element of uncertainty be said to work in the direction of reduced 

impact. Certain is only that real savings cannot be in the same proportion as the efficiency 

increases or, derived from them by holding output constant, the theoretical quantity of 

engineered savings. We therefore advocate the implementation of caps or taxes without 

waiting to compute total rebound to the fourth decimal place.  

   To achieve the environmental goals of less depletion and pollution, the efficiency strategy 

is not necessary; if rebound is high, it is also not sufficient. However, the jury is still out on 

whether rebound is greater than or less than 100%, and thus whether efficiency increases 

might be sufficient for reaching environmental goals. We believe our statistical tests tend to 

support the hypothesis that rebound is around 100%. Our regression analyses show 

reasonable correlation between growth in energy efficiency and growth in energy 

consumption, while our Granger tests suggest that energy efficiency increases are drivers of 

energy consumption. Given the lack of scientific consensus on whether efficiency increases 

in and of themselves lower, raise, or leave unchanged the trend of energy consumption, and 

given that caps or high taxes meet with more political resistance than mandated efficiency 

increases, we hope our work will inspire others to perform deeper and more sophisticated 

empirical tests using our data and further plausible variables. 

   If the day ever comes when governments worldwide decide to limit the consumption of 

non-renewable resources, the rebound effect, in so far as it is of environmental concern, then 

becomes a non-issue. Technological efficiency as well as increased reliance on renewable 

energy – and on lifestyle changes in the direction of ‘sufficiency’ – would decentrally follow 

on the heels of the implemented caps or taxes because we will try to maintain our affluence 

within our shrunken energy budgets, but the tail (efficiency) cannot wag the dog (reduced 

fossil-fuel combustion). The demonstration that we can become more efficient can at most 

help win over voters to support direct measures to limit depletion. We believe rebound 

research shows the environmental efficacy of the efficiency strategy to be highly uncertain, 

whereas that of caps and taxes are absolutely certain. 
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Appendices 

Appendix 1 

Raw Data from IEA 

 

 World GDP World TPES GDP/TPES 

 PPP   

Year Bn 2000 USDs EJ Bn USD/PJ 

    

1971 17449.755 231.6327 75.33373663 

  1972 18367.383 242.8225 75.64119002 

1973 19602.824 255.8587 76.61582106 

1974 20150.065 257.3808 78.28893511 

1975 20540.786 259.2889 79.2197009 

1976 21602.488 273.4697 78.99406937 

1977 22532.475 283.2250 79.5568131 

1978 23532.575 294.2000 79.98836231 

1979 24451.325 303.2856 80.62144639 

1980 24976.192 302.3436 82.6086323 

1981 25431.678 300.2675 84.69674974 

1982 25661.955 300.4430 85.41372493 

1983 26479.920 303.8535 87.14700709 

1984 27668.624 315.9320 87.57779492 

1985 28661.677 324.5087 88.32329422 

1986 29685.704 331.1218 89.65191298 

1987 30760.001 343.5178 89.54412674 

1988 32110.946 355.4557 90.33741468 

1989 33269.554 361.3780 92.06302718 

1990 33340.621 367.6963 90.6743382 

1991 33798.809 370.8948 91.12775532 

1992 34542.165 371.1076 93.07858047 

1993 35300.154 374.4715 94.26660229 

1994 36538.581 377.1971 96.86867401 

1995 37834.165 386.9064 97.7863595 

1996 39355.456 397.1109 99.10445425 

1997 41002.500 400.4428 102.3929106 

1998 42107.139 402.6746 104.5686595 



1999 43703.996 411.8218 106.1235735 

2000 45799.098 420.0136 109.0419292 

2001 46977.068 421.8019 111.3723483 

2002 48387.817 431.1469 112.2304659 

2003 50304.988 445.7469 112.8554989 

2004 52924.525 468.0649 113.0709189 

2005 55547.241 480.0840 115.703168 

2006 58677.667 493.0885 119.0002788 

2007 62111.529 504.6330 123.0825706 

2008 64095.275 513.8741 124.7295349 

2009 64244.429 508.6897 126.2939408 

 

Appendix 2 

First Differenced GDP/TPES and TPES; compare Appendix 7. 

 

 GDP/TPES change TPES change 

1972 0.307453396 11.1898259 

1973 0.974631037 13.0361933 

1974 1.673114053 1.522057 

1975 0.930765792 1.9081087 

1976 -0.22563153 14.1808841 

1977 0.562743723 9.7552125 

1978 0.431549215 10.9750277 

1979 0.633084083 9.0856305 

1980 1.987185909 -0.9420069 

1981 2.08811744 -2.0761477 

1982 0.716975191 0.1755301 

1983 1.73328216 3.4104731 

1984 0.430787831 12.0784912 

1985 0.745499301 8.5767402 

1986 1.328618753 6.6131178 

1987 -0.107786237 12.3959819 

1988 0.793287942 11.9378718 

1989 1.725612501 5.9223477 

1990 -1.388688985 6.318311 

1991 0.453417126 3.1984568 



1992 1.95082515 0.2127786 

1993 1.188021819 3.363918 

1994 2.602071718 2.725601 

1995 0.917685492 9.7092858 

1996 1.31809475 10.2045035 

1997 3.288456394 3.331893 

1998 2.175748811 2.2317981 

1999 1.554914044 9.1471917 

2000 2.918355725 8.1918913 

2001 2.330419051 1.7882554 

2002 0.858117652 9.3449968 

2003 0.625032961 14.5999973 

2004 0.215420007 22.3179773 

2005 2.632249122 12.0191407 

2006 3.297110785 13.0044723 

2007 4.082291764 11.5445342 

2008 1.646964316 9.2410625 

2009 1.564405907 -5.1843631 

 

Appendix 3 

Lag Specification 

> var.lag.specification(diffworld, lagmax = 6) 

$ldets 

     Lags  Log-Det     Chi^2   p-value 

[1,]    6 2.049861 5.3517581 0.2530706 

[2,]    5 2.331532 5.8447284 0.2110480 

[3,]    4 2.609853 3.7861699 0.4357173 

[4,]    3 2.774469 0.7230965 0.9484504 

[5,]    2 2.803393 4.5168428 0.3405550 

[6,]    1 2.970683 0.0000000 0.0000000 

$results 

     Lags      AIC      BIC       HQ 

[1,]    1 3.345683 3.620509 3.436780 

[2,]    2 3.428393 3.886435 3.580221 



[3,]    3 3.649469 4.290728 3.862028 

[4,]    4 3.734853 4.559329 4.008143 

[5,]    5 3.706532 4.714226 4.040554 

[6,]    6 3.674861 4.865771 4.069614 

 

attr(,"class") 

[1] "var.lag.specification" 

 

//Lag length of 1 selected, as it has very lowest score in every 

test for the reasonable lag lengths tested (1-6) 

 

Appendix 4 

Augmented Dickey Fuller Tests 

> adf.test(TPES.change, alternative = c("stationary"), k = 1) 

 Augmented Dickey-Fuller Test 

data:  TPES.change  

Dickey-Fuller = -3.7339, Lag order = 1, p-value = 0.03605 

alternative hypothesis: stationary 

> adf.test(GDP.TPES.change, alternative = c("stationary"), k = 1) 

 Augmented Dickey-Fuller Test 

data:  GDP.TPES.change  

Dickey-Fuller = -4.4242, Lag order = 1, p-value = 0.01 

alternative hypothesis: stationary 

 

Appendix 5 

Durbin-Watson Test 



> dwtest(GDP.TPES.change ~ TPES.change) 

 Durbin-Watson test 

data:  GDP.TPES.change ~ TPES.change  

 

DW = 1.1266, p-value = 0.001738 

alternative hypothesis: true autocorrelation is greater than 0 

//There may be a slight element of positive autocorrelation in the 

independent variable GDP.TPES.chance, but the Durbin-Watson 

statistic is still above the critical value of 1, and therefore 

significant positive autocorrelation of residuals is not certain. 

 

Appendix 6 

Granger Causality Test 

"granger" <-function(d, L, k = 1)  

{ 

of d[,1] and d[,2]. 

names.d <- dimnames(d)[[2]] 

D <- d 

for(i in 1:L)  

{ 

D <-ts.intersect(D, lag(d,  - i)) 

} 

dimnames(D)[[2]] <- paste(rep(names.d, L + 1), "_", rep(0:L, 

times = rep(2, L + 1)), sep = "") 

y  <- D[, k] 

n  <- length(y) 

x1 <- D[,  - (1:2)] 

x0 <- x1[, ((1:L) * 2) - (k %% 2)] 

z1 <- lm(y ~ x1) 

z0 <- lm(y ~ x0) 

S1 <- sum(z1$resid^2) 



S0 <- sum(z0$resid^2) 

ftest <- ((S0 - S1)/L)/(S1/(n - 2 * L - 1)) 

list(ftest = ftest, p.val = 1 - pf(ftest, L, n - 2 * L - 1), 

R2 = summary(z1)$r.squared) 

} 

> granger(cbind(TPES.change, GDP.TPES.change), L=1) 

$ftest 

[1] 5.315634 

$p.val 

[1] 0.02717995 

$R2 

[1] 1 

> granger(cbind(GDP.TPES.change, TPES.change), L=1) 

$ftest 

[1] 2.197268 

$p.val 

[1] 0.1472043 

$R2 

[1] 1 

Appendix 7 

Simple OLS regression of TPES on GWP/TPES; compare Appendix 2. 

INDEP VAR DEP VAR E as % of B eg E3/B2x100 
F as % of C eg 
F3/C2x100 

75.33372879 231.6327 i.e. Δindep var in percent i.e. Δdep var in percent 

75.64119058 242.8225 0.408132983 4.830837788 

76.61581959 255.8587 1.288489779 5.368612876 

78.28892054 257.3808 2.183753902 0.594898669 

79.21968893 259.2889 1.188889026 0.74135289 

78.99408234 273.4697 -0.284786000 5.469111867 

79.55681310 283.2250 0.712370776 3.567232494 

79.98835826 294.2000 0.542436459 3.875011034 

80.62145054 303.2856 0.791480528 3.088239293 

82.60863468 302.3436 2.464833026 -0.310598327 

84.69673874 300.2675 2.527706783 -0.686669075 

85.41372240 300.4430 0.846530424 0.058447884 

87.14699683 303.8535 2.029269272 1.135157085 



87.57778256 315.9320 0.494320804 3.975106425 

88.32329303 324.5087 0.851255244 2.714729752 

89.65191661 331.1218 1.504273146 2.037880649 

89.54412552 343.5178 -0.12023289 3.743637538 

90.33741468 355.4557 0.88591983 3.475191096 

92.06303095 361.3780 1.910190014 1.666114793 

90.67434456 367.6963 -1.508408292 1.748390882 

91.12775105 370.8948 0.500038341 0.869875492 

93.07857074 371.1076 2.140752593 0.05737476 

94.26659706 374.4715 1.276369313 0.906448696 

96.86866893 377.1971 2.760332876 0.727852453 

97.78635091 386.9064 0.947346541 2.574065389 

99.10444664 397.1109 1.347934266 2.637459603 

102.3929011 400.4428 3.318170403 0.839035141 

104.5686492 402.6746 2.124901381 0.557333032 

106.1235612 411.8218 1.48697721 2.271610874 

109.0419405 420.0136 2.749982476 1.989161331 

111.3723480 421.8019 2.137166173 0.425771927 

112.2304648 431.1469 0.770493608 2.215494999 

112.8554971 445.7469 0.556918577 3.386316821 

113.0709117 468.0649 0.190876483 5.006877221 

115.7031707 480.0840 2.327971807 2.567827667 

119.0002748 493.0885 2.849622948 2.708796794 

123.0825749 504.6330 3.430496333 2.341263282 

124.7295301 513.8741 1.338089648 1.831251622 

126.2939450 508.6897 1.254245853 -1.00888525 

    

 
0.982613424 

 
-0.489098129 

 
(R for B & C) 

 
(R for H & I) 

 
0.965529141 

 
0.23921698 

 
(R2 for B&C) 

 
(R2 for H&I) 

 

Where Y = Column F and X = Column Y, the Line Fit and Residuals present this picture: 

 


